14.1 Law of Sines

Works for ANY triangle not just Right Δ

Law of Sines Examples

1. Given $\triangle P Q R ; \angle Q=52^{\circ} ; p=3 ; q=4$.

Find $\angle \boldsymbol{P}$ to the nearest minute.
First, draw your triangle and label the parts.

$$
\begin{aligned}
& \begin{array}{l}
\frac{\sin P}{P}=\frac{\sin \boldsymbol{Q}}{\boldsymbol{P}}=\frac{\sin \boldsymbol{R}}{\boldsymbol{r}} \begin{array}{l}
\text { Sines you need an } \\
\text { angle and its } \\
\text { opposite side. }
\end{array} \\
\frac{\sin \boldsymbol{X}}{\boldsymbol{F}}=\frac{\sin \boldsymbol{Q}}{\frac{\sin }{\mathbf{R}}}=\frac{\text { R }}{\boldsymbol{R}}
\end{array} \\
& \frac{\sin x}{3}=\frac{\sin 52^{\circ}}{4} \begin{array}{l}
\text { This is a proportion } \\
\text { Cross multiply and } \\
\text { solve! }
\end{array} \\
& 4 \sin x=3 \sin 52 \\
& \sin x=\frac{3 \sin 52}{4} \\
& \sin ^{-1}\left(\frac{3 \sin 52}{4}\right)=x=3614^{\prime}
\end{aligned}
$$

2. Given $\triangle A B C ; \angle A=74^{\circ} ; a=52 ; \angle C=38^{\circ}$ Find c.

Draw your triangle and label all parts

$$
\begin{aligned}
& \frac{\sin A}{a}=\frac{\sin C}{c} \\
& \frac{\sin 74^{\circ}}{52}=\frac{\sin 38^{\circ}}{c} \text { Cross multiply and solve } \\
& c \sin 74^{\circ}=52 \sin 38^{\circ} \\
& c=\frac{52 \sin 38}{\sin 74}=\mathbf{3 3 . 3} \text { units }
\end{aligned}
$$

4. Solve $A D E F$. Ghen $\angle D=B 9^{\circ} ; \angle E=39^{\circ} ; f=6.7$.

$m \angle F=180^{\circ}-89^{\circ}-39^{\circ}=52^{\circ}$

$\frac{d \sin 52^{\circ}=\frac{6.7 \sin 89^{\circ}}{\sin 52^{\circ}} \frac{e \sin 52^{\circ}}{\sin 52^{\circ}} \frac{6.7 \sin 39}{\sin 52^{\circ}}}{d=8.5 \text { units } e^{2}-5.4 \text { units }}$

